Studies on synonymous codon and amino acid usages in Aeromonas hydrophila phage Aeh1: architecture of protein-coding genes and therapeutic implications.

نویسنده

  • Keya Sau
چکیده

BACKGROUND AND PURPOSE Codon and amino acid usage biases determined in numerous organisms have deciphered the architectures of their protein-coding genes to some extent. To understand the architecture of protein-coding genes of Aeromonas phages, codon and amino acid usage biases have been investigated in the protein-coding genes of the Aeromonas hydrophila phage Aeh1. METHODS In order to study synonymous codon and amino acid usage biases in Aeh1, all of its protein-coding genes were downloaded and analyzed by standard software programs. RESULTS Phage Aeh1 harbors an AT-rich genome. The third position of its synonymous codons carries mostly A or T base and mutational pressure strongly influences the synonymous codon usage bias. Translational selection also influences the codon usage of Aeh1 as its putatively lowly- and highly-expressed genes are influenced by Aeh1-specific tRNAs and by the abundant cellular tRNAs, respectively. Further analysis of amino acid usage shows that amino acid residues are also not randomly utilized in Aeh1 proteins and factors such as hydropathy, aromaticity and cysteine content are mostly responsible for the variation of amino acid usage in Aeh1 proteins. CONCLUSIONS As Aeh1 does not carry any toxin/antibiotic resistant gene but carries moderately highly expressed genes and relatively few AhdI sites, this study proposes that Aeh1 may be utilized as a therapeutic agent for A. hydrophila infections. While codon usage bias in Aeh1 is dictated both by mutational pressure and translational selection, amino acid usage bias in Aeh1 is influenced by hydropathy, aromaticity and cysteine content. Phage Aeh1 may be utilized in phage therapy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation and Partial Characterization of Two Aeromonas hydrophila Bacteriophages.

Two Aeromonas hydrophila bacteriophages, Aeh1 and Aeh2, were isolated from sewage. Both phages showed binal symmetry. The dimensions of A. hydrophila phages Aeh1 and Aeh2 differed from those of the other Aeromonas phages. Also, phage Aeh2 was the largest Aeromonas phage studied to date. Phage Aeh1 formed small, clear plaques, and phage Aeh2 formed turbid plaques with clear centers. Both phages ...

متن کامل

Multiple controls regulate the expression of mobE, an HNH homing endonuclease gene embedded within a ribonucleotide reductase gene of phage Aeh1.

Mobile genetic elements have the potential to influence the expression of genes surrounding their insertion site upon invasion of a genome. Here, we examine the transcriptional organization of a ribonucleotide reductase operon (nrd) that has been invaded by an HNH family homing endonuclease, mobE. In Aeromonas hydrophila phage Aeh1, mobE has inserted into the large-subunit gene (nrdA) of aerobi...

متن کامل

Insertion of a homing endonuclease creates a genes-in-pieces ribonucleotide reductase that retains function.

In bacterial and phage genomes, coding regions are sometimes interrupted by self-splicing introns or inteins, which can encode mobility-promoting homing endonucleases. Homing endonuclease genes are also found free-standing (not intron- or intein-encoded) in phage genomes where they are inserted in intergenic regions. One example is the HNH family endonuclease, mobE, inserted between the large (...

متن کامل

Mutational Pressure Drives Evolution of Synonymous Codon Usage in Genetically Distinct Oenothera plastomes

Background: Most of the amino acids are encoded by more than one codon, termed as synonymous codons. Synonymous codon usage is not random as it is unique to species. In each amino acid family, some synonymous codons are preferred and this is referred to as synonymous codon usage bias (SCUB). Trends associated with evolution of SCUB and factors influencing its diversification in plastomes of gen...

متن کامل

Complete Genome Sequence of Aeromonas hydrophila Phage CC2.

Aeromonas hydrophila is one of the major pathogenic bacteria for fish and people. To develop an effective antimicrobial agent, we isolated a bacteriophage from sewage, named CC2, and sequenced its genome. Comparative genome analysis of phage CC2 with its relatives revealed that phage CC2 has higher sequence homology to A. salmonicida phage 65 than to A. hydrophila phage Aeh1. Here, we announce ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi

دوره 40 1  شماره 

صفحات  -

تاریخ انتشار 2007